Usage of existing power plants as synchronous condenser
Conversion of existing power plants to synchronous condenser units

Increased need of reactive power

Available solutions

Electrical and mechanical works;
examples Biblis and Ensted

Your advantage
New challenges for power plants and power grids by a steady increase in renewable power

Reduction of nuclear and fossil power is causing stability problems in the HV-grid (Reduction of short circuit power and voltage dips stability)

Increase of renewable energy (wind parks in the north / PV in the south) means stress to power grid

International transit trade of electricity causes additional stress to transmission network
New challenges for power plants and power grids by a steady decrease of fossil power generation. Synchronous condensers as solution.

Impacts on the grid:

- Lack of short circuit power capacity in the grid
- Voltage and frequency swings in the grid
- Grid capacity has reached its limit due to increased power transport from one side of a country to the other side of the country
- Lack of generators for reactive power
- Power factor ($\cos \varphi$) difficult to control
New business model: profitable growth by generation or reactive power
Conversion of existing power plants to synchronous condenser units

Increased need of reactive power

Available solutions

Electrical and mechanical works to be done; examples Biblis and Ensted

Your advantage
Synchronous generator as optimal solution for synchronous condenser

Synchronous generator working as synchronous condenser
5…1.500 MVAr (+/-)

Transformer combination working as phase shifter
up to 1.000 MVAr (+/-)

Capacitor banks working as condenser
Continuous MVAr-regulation
up to 200 MVAr (+/-)
Synchronous generator working as synchronous condenser

New built synchronous condensers

or

Conversion of power plants to synchronous condenser units
Synchronous generator as optimal solution for synchronous condenser

<table>
<thead>
<tr>
<th></th>
<th>Synchronous generator working as synchronous condenser</th>
<th>Transformer combination working as phase shifter</th>
<th>Capacitor bank working as synchronous condenser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment cost per MVAr</td>
<td>low</td>
<td>mid.</td>
<td>high</td>
</tr>
<tr>
<td>Additional short circuit current (rotating mass)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Short delivery time</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Re-use of existing components</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Optimal solution</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Charges for reactive energy*

Two charging schemes for reactive energy exist:

- **Reactive Tariff**: A regular tariff rate is applied to each MVArh of reactive energy produced and/or consumed.
- **Penalty**: Reactive energy produced and/or consumed is charged only if some pre-defined conditions are met. Examples can be excesses of energy off-taken/fed-in during a given period or excess levels of $\cos \varphi$ or $\tan \varphi$.

<table>
<thead>
<tr>
<th>Country</th>
<th>Reactive Tariff (Y/N)</th>
<th>Penalty (Y/N)</th>
<th>Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia and Herzegovina</td>
<td>Y</td>
<td>N</td>
<td>5,56€ / MVArh</td>
</tr>
<tr>
<td>Croatia</td>
<td>Y</td>
<td>N</td>
<td>20,90€ / MVArh</td>
</tr>
<tr>
<td>France</td>
<td>N</td>
<td>Y</td>
<td>13,3€ / MVArh</td>
</tr>
<tr>
<td>Germany</td>
<td>Y/N</td>
<td>Y/N</td>
<td>8,70€ / MVArh</td>
</tr>
<tr>
<td>Serbia</td>
<td>Y</td>
<td>Y</td>
<td>1,22€ / MVArh</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Y</td>
<td>N</td>
<td>7,80€ / MVArh</td>
</tr>
</tbody>
</table>

* ENTSO-E Overview of transmission tariffs in Europe Synthesis June 2014
Example amortization time for synchronous condenser

<table>
<thead>
<tr>
<th>Owner</th>
<th>max. reactive power (MVAr)</th>
<th>Tariff</th>
<th>Project cost</th>
<th>Amortization time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>800MVAr</td>
<td>8,70€ / MVArh</td>
<td>5,5M€</td>
<td><24 month</td>
</tr>
<tr>
<td>RWE</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Investment

Profit
New tasks for old power plants means advantages for all involved parties

Minimum costs due to use of existing plants. Written-off assets will be reactivated!

Extended lifetime of a power plant generates additional income

Grid is in an optimum range of operation due to improved $\cos \varphi$ and increase of short circuit capability; Decreased danger for blackouts
Conversion of existing power plants to synchronous condenser units

Increased need of reactive power

Solutions

Electrical and mechanical works to be done; examples Biblis and Ensted

Your advantage
NPP Biblis: Generator in use for power-factor correction

Generator: 1500 MVA, 27 kV, 1500 rpm
Reactive Power: -450 ... +850 MVAr
Start operation: 2012
Conversion to synchronous condenser in few steps
Example: NPP Biblis

Mechanical Works:

• Check and recalculiation of generator design (electrical and mechanical)
• Decoupling of generator and turbine and dismantling of low pressure turbine part
• Modification and extension of generator shaft
• New / additional axial bearing
• New hydraulic motor (in case of brushless excitation)
• New oil pumps and piping
Conversion to synchronous condenser in few steps
Example: NPP Biblis

Electrical Works:

• Installation of start-up frequency converter for start-up
• Modification of generator protection system and synchronizer
• Modification of excitation equipment
• Modification / connection to the generator bus duct
• Installation of Is-limiter
• Electrical installation, cabling
Residual works:

Mechanical / hydraulic works:
- Blocking Generator / Turbine Springs
- Check of hydraulic oil pumps
- Modification of hydraulic pipes

I&C / DCS works:
- Installation of new probes and sensors
- Modification of DCS and turbine controller
- Connection to Control Room

Erection Supervision
Commissioning
Training

Conversion to synchronous condenser in few steps
Example: NPP Biblis
Conversion to synchronous condenser in few steps
Example: NPP Biblis

Overview of the electrical parts in Biblis

View of the

- Generator

- new electrical components on top of the low pressure turbine housing

- and the remaining high pressure turbines
Power Plant Ensted: Converted to Synchronous Condenser Operation

Generator: 850 MVA, 21 kV, 3000 rpm
Reactive Power: -350 … +800 MVAr
Start operation: 2013
Other references in 2013....

<table>
<thead>
<tr>
<th>Project Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKM, Germany</td>
<td>Study (2013)</td>
</tr>
<tr>
<td>Huntington Beach, USA</td>
<td>4x 128 MW (2013)</td>
</tr>
<tr>
<td>Bjaerveskov, Denmark</td>
<td>270 MVA (2013)</td>
</tr>
<tr>
<td>DK1 & DK2, Denmark</td>
<td>2x 150 MW (2013)</td>
</tr>
</tbody>
</table>
Main differences between Gas-Turbine and Steam-Turbine adaptation

For a conversion from power shaft to synchronous condenser, there is NO difference!
There is always a direct connection to the Generator which has to be removed.
SPPA-E3000 Electrical Solutions
Conversion of existing power plants to synchronous condenser units
Possible disconnection ways

Disconnecting the generator by moving the turbine [2” (5cm) needed]

Disconnecting the generator by removing the distance ring between generator and turbine

Disconnecting the generator by complete removal of the LP-turbine (compressor)
Conversion of existing power plants to synchronous condenser units

Increased need of reactive power

Solutions

Electrical and mechanical works to be done; examples Biblis and Ensted

Your advantage
Your advantages:

- Increased controlled reactive power in the grid
- Increased short circuit capacity of the grid
- Stability of the grid
- Stability of the grid voltage
- To settle grid system incidents
- Increased capacity (load flow) of the HV power grid
- To keep old power plants alive
- To earn money
Thank you!
To obtain further information, please contact:

SPPA-E3000.energy@siemens.com

This document contains forward-looking statements and information — that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words such as "expects", "anticipates", "intends", "plans", "believes", "seeks", "estimates", "will" or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens' control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens' filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC's website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.